
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018 445

Replacement Policy Adaptable Miss Curve
Estimation for Efficient Cache Partitioning

Byunghoon Lee, Kwangsu Kim, and Eui-Young Chung, Member, IEEE

Abstract—Cache replacement policies and cache partitioning
are well-known cache management techniques which aim to
eliminate inter- and intra-application contention caused by co-
running applications, respectively. Since replacement policies can
change applications’ behavior on a shared last-level cache, they
have a massive impact on cache partitioning. Furthermore, cache
partitioning determines the capacity allocated to each applica-
tion affecting incorporated replacement policy. However, their
interoperability has not been thoroughly explored. Since existing
cache partitioning methods are tailored to specific replacement
policies to reduce overheads for characterization of applica-
tions’ behavior, they may lead to suboptimal partitioning results
when incorporated with the up-to-date replacement policies.
In cache partitioning, miss curve estimation is a key compo-
nent to relax this restriction which can reflect the dependency
between a replacement policy and cache partitioning on parti-
tioning decision. To tackle this issue, we propose a replacement
policy adaptable miss curve estimation (RME) which estimates
dynamic workload patterns according to any arbitrary replace-
ment policy and to given applications with low overhead. In
addition, RME considers asymmetry of miss latency by miss
type, thus the impact of miss curve on cache partitioning can
be reflected more accurately. The experimental results sup-
port the efficiency of RME and show that RME-based cache
partitioning cooperated with high-performance replacement poli-
cies can minimize both inter- and intra-application interference
successfully.

Index Terms—Cache management, cache partitioning, cache
replacement policy, shared last-level cache (SLLC).

I. INTRODUCTION

IN MODERN chip multiprocessors, shared last-level caches
(SLLCs) have become a critical memory component due to

their performance impact. In these systems, multiple appli-
cations with different memory requirements are executed
simultaneously and the co-running applications inevitably
cause interapplication contention to SLLC while each appli-
cation cause intra-application contention. To solve SLLC

Manuscript received January 17, 2017; revised March 29, 2017; accepted
May 10, 2017. Date of publication June 6, 2017; date of current version
January 19, 2018. This work was supported in part by the National Research
Foundation of Korea under Grant 2016R1A2B4011799, and in part by the
IT Research and Development Program of MOTIE/KEIT (Design technology
development of ultralow voltage operating circuit and IP for smart sensor SoC)
under Grant 10052716. This paper was recommended by Associate Editor
T. Mitra. (Corresponding author: Eui-Young Chung.)

The authors are with the School of Electrical and Electronic
Engineering, Yonsei University, Seoul 120-749, South Korea (e-mail:
eychung@yonsei.ac.kr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2712666

performance degradation caused by these contentions, replace-
ment policies, and cache partitioning are considered to be
the key to minimize intra- and interapplication contention,
respectively.

The research of replacement policies originally aimed to
reduce intra-application interference on single-core systems,
and many high-performance replacement policies have been
proposed to improve cache performance of a single appli-
cation over least recently used (LRU) policy which is a
widely used conventional replacement policy. Such replace-
ment policies have been extended to SLLC on the basis
of per-application management [1]–[3]. However, replace-
ment policies cannot eliminate interapplication interference on
SLLC fundamentally [4].

To mitigate the interapplication interference on SLLC, cache
partitioning techniques have been proposed [4]–[9]. Cache
partitioning methods split and distribute the whole SLLC
space into each application and guarantee them to fully
occupy the allocated area, thereby eliminating interapplication
interference intentionally and alleviating capacity imbalance
among applications. For effective cache partitioning, an impor-
tant aspect is to accurately predict the performance of various
applications on SLLC with respect to allocated partition size,
the change of which can be represented as miss curve, a dis-
crete graph of cache miss count versus cache size. Therefore,
miss curve estimation is one of the most important components
for effective cache partitioning.

However, miss curve estimation is a challenging task due
to its huge overhead. To obtain a complete miss curve for
each application, each design point in the miss curve must be
estimated, resulting in hardware or software overhead which
is proportional to both the number of available partition size
and the number of applications. For this reason, existing cache
partitioning methods try to reduce the overhead by exploiting
intrinsic operation property of a given conventional replace-
ment policy [5], [6], so miss curve estimators of the existing
cache partitioning methods are dedicated to only particular
replacement policies although the choice of replacement pol-
icy is another predominant factor which affects the shape of
miss curve [10]. Thus, existing cache partitioning methods
may lead to suboptimal capacity allocation when incorporated
with up-to-date high performance replacement policies despite
opportunities to further reduce intra-application interference.

Another important observation is that misses caused by dif-
ferent request commands have a different performance impact
on the entire system. In noninclusive SLLCs, both read misses
and write misses incur memory stall time on the critical path

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:eychung@yonsei.ac.kr
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

446 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

and thus have a large impact on system performance. On
the other hand, writeback misses have a negligible impact on
system performance, which is similar to SLLC hits in most
cases because the latency of writeback misses can be hidden.
Despite these aspects, existing miss curve estimation methods
do not consider this asymmetry among SLLC miss types.

To tackle the limitations, we propose replacement policy
adaptable miss curve estimation (RME) which is an efficient
and practical miss curve estimation method for cache partition-
ing which is adaptable to any arbitrary replacement policy. In
RME, linear interpolation is used with a fixed number of sam-
pling points in miss curve for low-overhead estimation. The
key idea here is to change the location of the sampling point
dynamically. This not only helps estimated miss curves from
linear interpolation fit better to the exact miss curves but also
helps the proposed miss curve estimation cope with a change
of miss curve according to the dynamic characteristic of given
workloads. Our contributions are threefold.

1) We propose an efficient miss curve estimation technique
called RME with low overhead using linear interpola-
tion. RME can track the change of miss curve adaptively
regardless of access pattern and replacement policy.

2) RME generates writeback-aware miss curve which con-
tains only the misses causing the critical path of
memory stall time. Using writeback-aware miss curve,
the performance impact of partition allocation can be
reflected more accurately during cache partitioning.

3) RME-based cache partitioning (RCP) gives an opportu-
nity to explore the synergy between replacement policies
and cache partitioning, thus SLLC performance can
be further improved by minimizing both inter- and
intra-application interferences altogether.

The ultimate goal of the proposed method is to maximize
the SLLC performance by amplifying the synergy between
cache partitioning and replacement policy. To the best of our
knowledge, this is the first work to analyze the synergy of
replacement policy and cache partitioning thoroughly.

II. RELATED WORKS

A. Replacement Policy

Many replacement policies have been proposed to
improve cache performance by reducing intra-application
interference [2], [3], [11]–[13]. In addition, replacement poli-
cies are extended to support SLLC [1], [2]. They consider
workload characteristics of individual applications and dynam-
ically select a proper policy suitable to each application
to reduce intra-application interferences of each application.
However, they cannot handle interapplication interference of
SLLC fundamentally, so cache partitioning methods have been
proposed to solve the interapplication problem.

B. Cache Partitioning

Many cache partitioning methods have been proposed, and
most of them consist of two main components: 1) an allocation
policy and 2) a partitioning scheme [4]. An allocation policy
logically allocates the cache capacity to each application while
a partitioning scheme does the jobs of enforcing the allocated

partitions. Here, miss curve estimation is a key component of
an efficient allocation policy.

1) Allocation Policy With Miss Curve Estimation: Utility-
based cache partitioning (UCP) [5] is one of the most
well-known cache partitioning techniques which divides SLLC
capacity based on application’s utility of SLLC resource,
represented as miss curve. UCP assumes that the replace-
ment policy used in target SLLC is LRU and exploits LRU’s
stack property [14] to estimate the miss curve of each appli-
cation with low-overhead. Therefore, miss curve estimator
called utility monitor (UMON) generates a miss curve for
each application. After collecting miss curve information,
UCP finds the optimal partition allocation by mixing the esti-
mated miss curves. Since finding optimal partition allocation
is NP-hard, the authors also propose an effective heuristic
allocation algorithm called lookahead algorithm.

Co-optimizing locality and utility (CLU) [6] extends UCP
to exploit two replacement policies: 1) LRU for high local-
ity workloads and 2) bimodal insertion policy (BIP) for low
locality workloads [11]. CLU allocates SLLC capacity to
applications and also dynamically selects a proper replace-
ment policy between LRU and BIP for each application. For
the allocation policy in CLU, UMON is used to estimate miss
curve1 of LRU and miss curve estimator for BIP, called locality
monitor (LMON), is newly proposed since BIP do not satisfy
the stack property of LRU.

UMON [5] and LMON [6] are hardware-based miss curve
estimators with low overhead, and they show high accuracy on
miss curve estimation for SLLC managed by target replace-
ment policies: LRU and BIP. However, they are not able to
accurately estimate miss curves of SLLC managed by other
replacement policies. Furthermore, they do not classify misses
according to miss type on their miss curve estimation.

2) Partitioning Scheme: An allocation policy is highly
influenced by the choice of replacement policies, whereas a
partitioning scheme is often easily applicable to a variety of
replacement policies [4]. Way-based partitioning is a popular
partitioning scheme owing to its simplicity [5], [6], [9], [15],
and a partitioning scheme called Vantage [4] is proposed to
overcome the poor scalability of other partitioning schemes.
These partitioning schemes are compatible with arbitrary
replacement policy as they can manage each partition using
any given replacement policy on a per-partition basis.

In short, existing cache partitioning methods are bound to
particular replacement policies due to their allocation policies,
and the allocation policy must be redesigned in order to adopt
other replacement policies.

C. Relationship Between Replacement Policy and
Cache Partitioning

A cache performance model for arbitrary age-based replace-
ment policy was proposed [10]. The model can accurately esti-
mate the performance of up-to-date replacement policies with
a given application and cache configuration. The authors gives
a good inspiration about the relationship between replacement

1The authors originally uses hit curve instead of miss curve in their paper.
For consistency of this paper, we substitute miss curve for the hit curve.

LEE et al.: RME FOR EFFICIENT CACHE PARTITIONING 447

(a) (b) (c)

(d) (e)

Fig. 1. Miss curves on SLLC according to application, replacement policy, and miss type. (a) Conventional and writeback-aware miss curves of xalancbmk.
(b) Conventional and writeback-aware miss curves of soplex. (c) Conventional and writeback-aware miss curves of GemsFDTD. (d) Composite miss curves
of xalancbmk and soplex. (e) Composite miss curves of xalancbmk and GemsFDTD.

policies and cache partitioning, but the allocation policy based
on the model is not practical due to its scalability issue.2

III. MOTIVATION

Before discussing the details of our proposed scheme, we
start from motivating examples to show how replacement poli-
cies and miss types affect miss curve and how miss curve
estimation affects cache partitioning.

Fig. 1 shows miss curves of three applications (xalancbmk,
GemsFDTD, and soplex) from SPEC CPU2006 benchmarks
and composite miss curves where miss curves of two appli-
cations are mixed. For each application and combination of
applications, we consider two miss curves by miss types.

1) Conventional miss curve (solid line) which contains total
misses by all miss types.

2) Writeback-aware miss curve (dashed line) which filters
out misses by writeback requests which are not on the
critical path of memory stall time in most cases.

Also, we consider three replacement policies: 1) LRU;
2) dynamic insertion policy (DIP) [11]; and 3) protecting
distance-based policy (PDP) [3].

Fig. 1(a)–(c) show miss curves for xalancbmk, soplex, and
GemsFDTD, respectively, when each application is executed
alone. The x-axis of Fig. 1(a)–(c) represents the SLLC capacity
as the number of ways, and the number of sets and block size
are fixed to 4096 and 64 bytes, respectively. Also, the y-axis
represents misses per kilo instructions (MPKI) of SLLC. To
obtain each miss curve exactly, we perform simulations for all
points in miss curve from 1-way (256 KB) to 16-way (4 MB).

2The allocation policy needs N×W model instances where N is the number
of cores and W is the associativity of SLLC while model instances require
both hardware and software overhead although the hardware overhead for
each instance is negligible with only about 1% of LLC area [10].

TABLE I
OPTIMAL PARTITION ALLOCATIONS FOR

COMBINATIONS OF TWO APPLICATIONS

A. Impact of Replacement Policy on Miss Curve

Fig. 1(a) illustrates the influence of a replacement policy on
a miss curve, showing that DIP and PDP outperform the con-
ventional replacement policy, LRU, in the entire region of miss
curves. In Fig. 1(b), miss curve of soplex is also influenced
by the choice of replacement policy.

Fig. 1(d) and (e) show composite miss curves for combina-
tion of two applications when executed concurrently and 4 MB
SLLC with 16-way associativity is divided into two partitions
by way-based cache partitioning. All possible partition allo-
cations are represented in the x-axis of Fig. 1(d) and (e), and
each partition allocation is shown as x : y where x and y are the
allocated partition size for the former and latter application,
respectively. Table I represents the optimal partition allocation
for each combination.

Fig. 1(d) shows the impact of replacement policy on cache
partitioning clearly. Different replacement policies in opti-
mally partitioned SLLC lead to different SLLC performance
showing that DIP and PDP reduce 12.53% and 19.64% of
MPKI, respectively, compared to LRU. Furthermore, all three

448 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

(a) (b) (c)

Fig. 2. Miss curve estimation from UMON [5]. (a) Estimated miss curves of xalancbmk from UMON. (b) Estimated miss curves of soplex from UMON.
(c) Composite miss curves of xalancbmk and soplex from UMON.

replacement policies lead to different optimal partition allo-
cations, and the optimal allocation of one replacement policy
may not be optimal to other replacement policies. When par-
tition allocation is fixed to the optimal allocation for LRU
(13:3), partitioned SLLC incorporated with DIP and PDP show
MPKI reduction of 7.59% and 13.65%, respectively, compared
to that incorporated with LRU. This infers that cache partition-
ing method tailored for a specific replacement policy incurs
suboptimal results when incorporated with other replacement
policies.

B. Impact of Writeback Misses on Miss Curve

Fig. 1(c) shows the gap in MPKI between conventional
miss curve and writeback-aware miss curve, and the gap is
emphasized in low capacity case. In a noninclusive SLLC with
small capacity, corresponding blocks on SLLC are already
evicted with high probability when the upper-level cache sends
writeback requests. This causes misses by writeback request,
and latency of the misses can be hidden mostly thanks to
memory-level parallelism. Nevertheless, the conventional miss
curve cannot reflect this aspect and can be misleading. As
the available capacity increases, the writeback-aware miss
curve converges to conventional miss curve because SLLC
can include most data in the upper-level caches. Fig. 1(b) also
shows the similar gap in the case of SLLC with small SLLC
capacity.

Fig. 1(e) shows the composite miss curves of xalancbmk
and GemsFDTD from conventional and writeback-aware miss
curves, and it also shows the optimal partition allocation
with each composite miss curve. For all three replacement
policies, the optimal partition allocation for writeback-aware
miss curves grants more capacity to xalancbmk compared to
that with conventional miss curves. Partitioned SLLC incor-
porated with LRU shows 8.05% difference in MPKIs at
between the optimal partition allocations from conventional
and writeback-aware miss curves. Also, partitioned SLLC with
DIP and PDP show 4.13% and 4.02% difference, respectively.
Thus, we can further improve SLLC performance as much
as the differences, considering the fact that misses by write-
back requests do not need to wait for responses from main
memory and the latency of the misses can be hidden in most
cases.

TABLE II
OPTIMAL PARTITION ALLOCATIONS FOR xalancbmk+soplex

WITH EXACT AND ESTIMATED MISS CURVES

C. Impact of Miss Curve Estimation on Cache Partitioning

Fig. 2 shows exactly obtained miss curves (solid line)
and estimated miss curves from UMON (dotted line) each
combined with three different replacement policies. In
Fig. 2(a) and (b), UMON can accurately estimate miss curves
for LRU while it gives inaccurate miss curves for DIP and
PDP. This is because UMON is designed to exploit LRU’s
stack property and DIP and PDP do not comply to the stack
property.

Fig. 2(c) shows the combination of the estimated miss
curves from UMON, and Table II represents the optimal par-
tition allocations. In Fig. 2(c), miss curves from UMON can
provide the optimal partition allocation for SLLC managed by
LRU while giving suboptimal allocations for DIP and PDP. For
partitioned SLLC managed by DIP and PDP, partition alloca-
tion shaped by UMON lead to 16.88% and 26.01% increase in
MPKI compared to the optimal partition allocation from the
exact miss curve estimation.

In this section, we observed how replacement policies
and writeback miss affect miss curves. Conventional miss
curve estimators can provide optimal results for given spe-
cific replacement policies, but they do not support cache
partitioning incorporated with replacement policies other than
preconfigured ones. To tackle the problem, we propose a
novel miss curve estimation technique adaptable to arbitrary
replacement policy with low overhead.

IV. REPLACEMENT POLICY ADAPTABLE

CACHE PARTITIONING

A. Cache Partitioning Architecture

To clarify the scope of our proposed method, we first
give a generalized cache partitioning architecture as shown

LEE et al.: RME FOR EFFICIENT CACHE PARTITIONING 449

Fig. 3. Generalized cache partitioning architecture.

in Fig. 3. The generalized architecture consists of three main
components.

1) An allocation policy which logically allocates an appro-
priate partition size, πi, to each application, appi.

2) A partitioning scheme which enforces πi to appi.
3) A replacement policy which manages SLLC contents of

each partition with given πi to appi.
An allocation policy periodically recalculates the SLLC par-

tition allocation for time interval t, �t = {π t
1, π

t
2, . . . , π

t
N},

such that performance of SLLC is maximized. Meanwhile, a
partitioning scheme engages in the management of SLLC con-
tents on every SLLC access with �t from allocation policy.
It makes SLLC contents of each partition managed separately,
and the management is performed with the assistance of a
replacement policy.

Also, there exists dependency between an allocation pol-
icy and a replacement policy such that the allocation policy
is strongly influenced by the replacement policy which can
change workload pattern of applications on SLLC. The depen-
dency prevents existing cache partitioning methods from being
incorporated with an arbitrary replacement policy. For this
reason, we focus on an allocation policy to make cache
partitioning adaptive to any replacement policies.

An allocation policy consists of two components: 1) a miss
curve estimator and 2) allocation algorithm. miss curve esti-
mator generates an estimated miss curve, MCi, for appi, and
allocation algorithm takes the estimated miss curves as inputs
and returns the optimal partition allocation for the next time
interval. Since SLLC behavior with respect to a replacement
policy may be reflected on miss curves, miss curve estimation
is the key component to allow an allocation policy adaptable
to arbitrary replacement policy while allocation algorithm is
just an exploration process with given miss curves and is
independent of replacement policy. For our allocation pol-
icy, an allocation algorithm called lookahead algorithm [5]
is adopted due to its effectiveness with reasonable
complexity.

To summarize, the dependency between replacement poli-
cies and cache partitioning can be reflected on allocation
decision of partition size to each application in form of miss

curve. Therefore, we propose a novel miss curve estimation
technique adaptable to arbitrary replacement policy.

B. Replacement Policy Adaptable Miss Curve Estimation

Unlike existing methods, we approximate miss curve with-
out preliminary knowledge of given replacement policy.
Instead, we only consider gradient of miss count and perform
linear interpolation with a fixed number of sampling points,
locations of which are changed adaptively. The key point is
how many sampling points are required and how to dynami-
cally determine the locations of sampling points within miss
curves.

One of the premises of the proposed scheme is that allo-
cation algorithm gives higher priority for partition allocation
to the application with a larger gradient of miss count, thus
it is important to find and to accurately estimate miss counts
in a region of interest (ROI) of miss curve where the gradi-
ent varies most drastically. Another premise is that any miss
curve is monotonically decreasing. Since larger cache size
leads to less capacity misses for a given application, miss
curves, a graph of miss counts versus cache size, have a mono-
tonically decreasing shape. Two sampling points are used to
find the lower-bound and upper-bound of miss curve. Since
every miss curve has monotonically decreasing shape, miss
count of πmin(πmax) is the maximum(minimum) value in miss
curve where πmin and πmax denote the minimum and maxi-
mum partition size, respectively. Then, we can find the ROI
through exploration using two sampling points with variable
location: 1) allocation point and 2) guidance point. Allocation
point is the actual allocation decision made by allocation algo-
rithm while guidance point is used to guide allocation point
toward ROI.

If we vertically split the miss curve from allocation
point—chosen by incorporated allocation algorithm using esti-
mated miss curve—into left segment([πmin, πi]) and right
segment([πi, πmax]), the actual ROI would always reside on
the side with larger gradient value, due to the monotonic nature
of miss curves. Guidance point—where miss count is esti-
mated in order to compute gradient value required in next
time interval—is thus set to the median of the segment where
the ROI would be, that is, the side with larger gradient value.
By the end of a time interval, the miss count at guidance point
is accurately estimated and is used to better estimate the miss
curve using linear interpolation. Newly estimated miss curve
will, in turn, be provided to the allocation algorithm to increase
the odd of choosing allocation point closer to ROI. This way,
allocation point converges toward ROI with time.

1) RME Architecture: Miss curve estimators usually use
auxiliary tag directory (ATD) structures [5], [6]. ATD entries
are updated upon every SLLC reference, and ATD reports
whether the reference on the ATD is missed or not. This ATD
operation is performed independently to real tag directory of
SLLC. The purpose of ATD is to profile miss counts for a
time interval with the given SLLC size and associativity, thus
ATD is used together with miss counters.

Fig. 4 shows the architecture of RME. RME contains three
ATDs: two fixed-sized ATDs (F-ATDs) and one variable-sized

450 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

Fig. 4. Architecture of RME.

ATD (V-ATD). F-ATDs are used to estimate miss count for
the minimum partition size (πmin) and the maximum parti-
tion size (πmax). The role of ATDs is to profile miss counts
for the sampling points during a time interval. F-ATDs pro-
file miss counts of πmin and πmax for the lower-bound and
upper-bound of miss curve. On the other hand, V-ATD is
used to profile miss count for a specific partition size (π t

i−var)
at given time interval t, and the V-ATD can be reconfigured
to profile miss count of different partition size. The recon-
figuration process is similar to real tag in SLLC, but it is
less complex than the real tag in that V-ATD only targets a
single application. Also, all three ATDs are managed by the
same replacement policy used in the real tag. When a dynamic
replacement policy is employed, parameters for replacement
are dynamically adjusted for each application. In that case, the
ATDs apply the parameters based on their miss count profiling
results.

Our proposed RME also contains four miss counters for
πmin, πmax, π t

i−var, and the current partition size, π t
i . Three

miss counters for πmin, πmax, and π t
i−var are incremented upon

a miss in the corresponding ATD, and miss counter for πi is
incremented upon a miss in the partition of the real tag. Thus,
the miss counter for π t

i−var and π t
i correspond to allocation

point and guidance point, respectively. A key point of the
miss counters is that they exclude misses by writebacks on
their counting. This is because performance effects of line-fill
and writeback are different [16]. Write-backs from the upper-
level caches may not trigger main memory access immediately
and their miss penalty can be hidden while misses caused
by other commands always trigger line-fill, thereby triggering
main memory read.

2) Algorithm for RMEs: The operation of RMEs consists of
two main algorithms: 1) preallocation phase (Algorithm 1) and
2) post-allocation phase (Algorithm 2). In preallocation phase,
each RME generates a miss curve of an application, MCt+1

i ,
with four miss counters profiled during the time interval t.
With generated miss curves for all RME, allocation algo-
rithm mixes the miss curves and finds the optimal partition
allocation for the next time interval, �t+1. After allocation,
post-allocation phase of RME selects the location of sampling
point for the next time interval, π t+1

i−var on a per-application
basis.

Algorithm 1 Preallocation Phase for RMEs

Input: 4 sampled miss counts (for πmin, πmax, π t
i , and π t

i−var)

of each application

Output: Estimated miss curves to allocation algorithm
1: for 1 ≤ i ≤ N do � on per-application basis

2: curve-fitting immediate miss curve, IMCt
i

by linear interpolation of the 4 miss counters

3: for 1 ≤ j ≤ W do
4: MCt+1

i,j = α · IMCt
i,j + (1 − α) · MCt

i,j

5: end for
6: end for

Algorithm 2 Postallocation Phase for RMEs

Input: �t+1 from allocation algorithm
Output: π t+1

i−var of each application

1: for 1 ≤ i ≤ N do � on per-application basis

2: if π t+1
i < πmin + 2 then

3: π t+1
i−var = (π t+1

i + πmax)/2

4: else if π t+1
i > πmax − 2 then

5: π t+1
i−var = (πmin + π t+1

i)/2

6: else
7: �l = (MCt+1

i,πmin
− MCt+1

i,πi
)/(π t+1

i − πmin)

8: �r = (MCt+1
i,πi

− MCt+1
i,πmax

)/(πmax − π t+1
i)

9: if �l < �r then
10: π t+1

i−var = (π t+1
i + πmax)/2

11: else
12: π t+1

i−var = (πmin + π t+1
i)/2

13: end if
14: end if
15: reconfigure V-ATD for application i

16: end for

In Algorithm 1, miss curve for each application is esti-
mated with the profiled miss counts during time interval t.
An immediate miss curve of time interval t for each applica-
tion is approximated by linear interpolation of the four miss
counters (line 2), then exponential moving average (EMA) of
miss curve is calculated to cope with the dynamic behavior
of given application and to predict miss curve for the next
time interval. The procedure of the prediction with EMA can
be implemented easily with low overhead (lines 3–5).3 Using
estimated miss curves, the allocation algorithm allocates the
proper partitions for time interval t + 1.

In Algorithm 2, guidance point for time interval t+1, π t+1
i−var,

is calculated for each application. x-axis domain of miss curve
is divided as the left side and right side on π t+1

i , and then
the gradient of the left side(right side), �l(�r), are calculated
(lines 7 and 8). If �l is less than �r, π t+1

i−var is set to the median
between π t+1

i and πmax (line 10). Otherwise, π t+1
i−var is set to

3Weighting coefficient α is set to 0.5 in this paper.

LEE et al.: RME FOR EFFICIENT CACHE PARTITIONING 451

(c)

(b)

(a)

Fig. 5. Example of miss curve estimation by RME. (a) Exact miss curve
(solid line) and approximated miss curve (dashed line) at the end of time
interval t. (b) Exact miss curve (solid line) and approximated miss curve
(dashed line) after calculating �t+1. (c) Exact miss curve (solid line) and
approximated miss curve (dashed line) at the end of time interval t + 1.

the median between πmin and π t+1
i (line 12). As such, we can

narrow down ROI in miss curve adaptively with V-ATD.
Fig. 5 illustrates an example of the miss curve estimation

for application i. Fig. 5 shows the exact miss curve (solid
line) and the most drastically changed region in the miss curve
is at partition size 2. Assuming that π t

i is 7 and π t
i−var is

10 for time interval t, then the miss counts for four sampled
points [πmin(1), π t

i (7), π t
i−var(10), and πmax(13)] are profiled

during time interval t. Then, miss curve can be approximated
by curve-fitting of four points [at πmin(1), π t

i (7), π t
i−var(10),

and πmax(13)] at the end of time interval t + 1. The estimated

TABLE III
CACHE CONFIGURATION

TABLE IV
BENCHMARK CLASSIFICATION

miss curve is represented by a dashed line in Fig. 5(a). After
the estimation of miss curve for each application, allocation
algorithm mixes all miss curves and find the optimal partition
allocation. Assume that π t+1

i is chosen to be 4 for the next time
interval t + 1 after partition allocation. Then, π t+1

i−var is set to
the median between πmin and π t+1

i because �l is greater than
�r, which is represented by a dotted line in Fig. 5(b). Thus,
the locations of the sampled points are changed (πi : 7 → 4,
πi−var : 10 → 2) and miss counts for the points are profiled
during time interval t + 1. To calculate partition allocation for
time interval t + 2, we again perform the linear interpolation
of the four sampled points [πmin(1), π t+1

i−var(2), π t+1
i (4), and

πmax(13)] at the end of time interval t + 1. Fig. 5(c) shows
the approximated miss curve at the end of time interval t + 1,
and it accurately captures ROI in miss curve.

V. EXPERIMENTS

A. Experimental Methodology

We use a Pin [17] based trace-driven cache simulator for
our SLLC simulation. Our target memory hierarchy consists
of two private cache levels (L1 and L2) and a shared last
level cache (L3). The configuration parameters are shown in
Table III.

SPEC 2006 benchmark suite is used to construct multi-
programmed workloads. The benchmarks are classified into
four categories as shown in Table IV. Capacity-sensitive
benchmarks are susceptible to performance loss with reduced
SLLC partition size. The capacity-sensitive group is further
categorized according to their sensitivity to a replacement
policy. In the capacity-insensitive group, memory-intensive
benchmarks are categorized as streaming and others are

452 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

TABLE V
BENCHMARK COMBINATIONS

categorized as CPU-bound benchmarks. Table V shows con-
structed multiprogrammed workloads for quad-core and 8-core
systems.

We run each benchmark 250 MB instructions after bypass-
ing 10 B instructions. If a benchmark finishes 250 MB
instructions while others are still running, the benchmark
continues to run until all benchmarks complete 250 MB
instructions. The simulator returns the simulation results of
only first 250 MB instructions for each benchmark after the
simulation is finished. This simulation methodology is similar
to [6].

Two performance metrics are used as

throughput =
N∑

i=1

IPCi (1)

fair speedup = N
∑N

i=1(Single IPCi/IPCi)
. (2)

In (1) and (2), IPCi denotes the number of executed instruc-
tions per cycle in core i and Single IPCi denotes the number
of executed instructions per cycle in core i when core i is run
alone with LRU policy. Throughput in (1) indicates system uti-
lization and fair speedup in (2) balances both performance and
fairness among cores [18]. In (2), IPCi/Single IPCi denotes
speedup of core i, and fair speedup is the harmonic mean of the
speedups of individual cores. Since the harmonic mean repre-
sents the average of the speedups, fair speedup can reflect the
fairness among cores as well as performance of each core.

To show its adaptability to replacement policies, RCP
is run in conjunction with multiple replacement policies:
LRU, DGIPPR [12],4 LFU [13], TA-DIP [1], TA-DRRIP [2],

44-DGIPPR is used with multiset dueling. We use the following four IPVs
for any SLLC partition of k-way (1 ≤ k ≤ W) : IPV0 = [0, . . . , 0, 0], IPV1 =
[0, . . . , 0, k − 1], IPV2 = [0, . . . , k/2, k − 1], and IPV3 which is a random
vector for a partition of k-way. The purpose of this policy is to demonstrate
the adaptability of RCP with various types of replacement policies. For the
best performance of DGIPPR, the optimal IPVs for every available SLLC
partition size need to be evolved using genetic algorithm.

and PDP [3].5,6 The combinations are represented as
RCP+LRU, RCP+DGIPPR, RCP+LFU, RCP+TA-DIP,
RCP+TA-DRRIP, and RCP+PDP, respectively. Then the
results are compared with two cache partitioning schemes:
UCP [5] and CLU [6].7 Since way-based partitioning scheme
is used in both UCP and CLU, RCP also adopts way-based
partitioning scheme in these experiments for fair comparison.
In the experiments, partition allocation is periodically recal-
culated every five million cycles for all cache partitioning
schemes.

In this section, we first demonstrate the efficiency of RME
by showing the accuracy of RME versus an exhaustive miss
curve estimator which estimates miss counts for every avail-
able partition size. Then, we analyze the adaptability of
RCP and the effectiveness of writeback-aware miss curve.
Finally, we show the impact of RME on cache partitioning
and the synergy of replacement policy and cache partitioning
using RCP.

B. Accuracy of Estimated Miss Curves From RME

To reduce miss curve estimation overhead, RME tries to
capture ROI in miss curve through interaction with allocation
algorithm and to accurately estimate the ROI rather than the
entire region in miss curve. Fig. 6 shows how accurately RME
finds and estimates ROI in miss curves. In Fig. 6, accuracy of
estimated miss curves from RMEs with quad-core workloads
is compared to exhaustive miss curves within ROIs of various
sizes with πi as the center. An exhaustive miss curve for a
single application is obtained by estimating miss counts of all
points in a miss curve exhaustively using W ATDs for W-way

5In TA-DIP and TA-DRRIP, SDMs contain 32 sets and PSEL counters are
10-bit. Bimodal throttle parameter of TA-DIP and TA-DRRIP is 1/32. 2-bit
RRPV registers are used in TA-DRRIP. dmax of PDP is 256.

6PDP utilizes a by-pass mechanism for a noninclusive cache. In this
paper, we exclude by-pass mechanism from PDP to focus on the impact of
replacement policy and cache partitioning on SLLC performance.

7Set sampling rate of UCP, CLU, and RCP is 1/64.

LEE et al.: RME FOR EFFICIENT CACHE PARTITIONING 453

(a)

(b)

(c)

Fig. 6. Error rate of RME compared to the exhaustive miss curve estimation.
(a) Error rate of RME in the ROI of size 5 with πi as the center. (b) Error
rate of RME in the ROI of size 3 with πi as the center. (c) Error rate of RME
in the ROI of size 1 (at πi).

SLLC, while RME approximates the miss curve by performing
linear interpolation with four sampled points of the miss curve
to reduce the estimation overhead.

For all six replacement policies, Fig. 6(a) shows 6.98% of
average error rate when incorporated with RME compared to
the exhaustive miss curve in the ROI of size 5 with πi as the
center, and Fig. 6(b) shows 5.22% of average error rate of
RME compared to the exhaustive miss curve in the ROI of
size 3 with πi as the center. In Fig. 6(c), 2.90% of an average
error rate of RME is shown compared to the exhaustive miss
curve at the single point, πi.

These results show that average error rate is reduced as the
size of the ROIs decreases, and it is worth noting that the
deviation for workloads is also reduced as the size decreases.
Nonetheless, in Fig. 6(a), some workloads (n4-5, n4-13, and
n4-15) show high error rates. The main reason is that πi is
distant from πi−var, preventing πi−var from approaching the
ROI. This is because πi is close to πmin or πmax, thus πi−var
is located nearby the center of miss curve ((πmin + πmax)/2)
by Algorithm 1 (from lines 2–5). In these cases, the accuracy

Fig. 7. Throughput improvement of each cache partitioning scheme under
multiple replacement policies, over unpartitioned SLLC managed by LRU,
averaged from 16 quad-core workloads (from n4-1 to n4-16).

at πi is guaranteed because RME profiles miss counts at πmin
and πmax in every time interval although the workloads show
high error rates in the region of size 5. This way, RME can
approach ROIs and can thus accurately estimate miss counts in
the ROIs although ROIs are changed according to dynamically
changed workloads over time.

C. Performance Impact by Adaptability to
Replacement Policies

To show the effectiveness of the adaptability of RCP to
an arbitrary replacement policy, we observe how system
performance is affected when cache partitioning schemes are
incorporated with various replacement policies. Fig. 7 shows
the throughput improvement of each cache partitioning scheme
under multiple replacement policies, over unpartitioned SLLC
managed by LRU. Each bar in Fig. 7 shows an averaged value
from 16 quad-core workloads, which are described in Table V.
The cache partitioning schemes compared in Fig. 7 are listed
as below.

1) UCP: Based on miss curve estimation specialized to
LRU from UMON, which cannot obtain writeback-
aware miss curves due to its structural limitation.8

2) CLU: Based on both UMON for LRU and LMON for
BIP. CLU cannot also take account of writeback misses
on its miss curve estimation due to UMON’s limitation.

3) RCP /wo WB: Based on RME without writeback-aware
miss curve.

4) ECP /wo WB: Based on exhaustive miss curve estima-
tion without writeback-aware miss curve.

5) RCP: Based on RME with writeback-aware miss curve,
the proposed method.

6) ECP /w WB: Based on exhaustive miss curve estimation
with writeback-aware miss curve.

Note that CLU in this experiment only provides partition
allocation under arbitrary replacement policy while the origi-
nal CLU have an ability to select the proper replacement policy
between LRU and BIP. Also, ECP uses EMA to predict miss

8In UMON, which uses a single ATD with the same configuration with a
target SLLC, writeback misses are always filled in the LRU position, thus
intrapartition interferences by writeback misses in a small-sized partition
cannot be reproduced during miss curve tracking of UMON.

454 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

curves for the next interval like RCP. Because of mispredic-
tion of EMA, ECP cannot always guarantee the optimality of
miss curve estimation although it shows the best performance
improvement in most cases.

Fig. 7 shows that cache partitioning schemes under high-
performance replacement policies deliver further performance
improvement over those under LRU. The reason is that
the replacement policies can further reduce intra-application
interference over LRU with given capacity size for each appli-
cation. However, the results are suboptimal in UCP and CLU
since they are optimized for certain replacement policies and
thus may not provide optimal partition allocation to SLLC
managed by other replacement policies.

To focus on the adaptability to replacement policies, RCP
/wo WB is compared with other cache partitioning schemes,
which excludes the effect of writeback-aware miss curve
estimation. In Fig. 7, RCP /wo WB can provide the near-
optimal partition allocation because RME can estimate miss
curves accurately regardless of incorporated replacement pol-
icy. Similar to UCP and CLU, RCP /wo WB incorporated
with a high-performance replacement policy shows further
improvement over RCP /wo WB with LRU as shown in Fig. 7.
However, the performance improvement in RCP /wo WB is
larger than UCP and CLU. The results imply that RCP /wo
WB provides more optimal partition allocation than UCP and
CLU under arbitrary replacement policy. The results imply
that under most replacement policies, RCP /wo WB provides
more optimal partition allocations than UCP and CLU. On
average for all six replacement policies, RCP /wo WB pro-
vides 1.80% and 1.26% higher throughput than UCP and CLU,
respectively, while it shows under 0.01% of difference with
ECP /wo WB which gives near-optimal partition allocations
for arbitrary replacement policy. Therefore, replacement policy
adaptability of RCP can lead to further improvement of system
performance by generating near-optimal partition allocations
under arbitrary replacement policy.

D. Performance Impact by Writeback-Aware Miss
Curve Estimation

Let us revisit Fig. 7 to demonstrate the performance impact
of writeback-aware miss curves on cache partitioning. To show
the impact of writeback-aware miss curves, we compare RCP
with RCP /wo WB and we set ECP /w WB and ECP /wo WB
as references for this comparison. In Fig. 7, RCP provides
2.67% higher throughput over RCP /wo WB on average while
ECP /w WB provides 2.91% higher throughput over ECP /wo
WB on average. Therefore, the comparison shows that RCP
can almost fully exploit the asymmetry of different miss types
to maximize the system performance.

In addition, Fig. 8 shows the influence of writeback-aware
miss curve on partition allocation for each application to
explain the reason for performance improvement through
writeback-aware miss curve. Fig. 8(a) gives the percentage of
writeback accesses on total SLLC accesses for each applica-
tion, and we obtain this statistics from simulation with SLLC
managed by UCP and LRU. In Fig. 8(b), partition alloca-
tion determined by RCP+LRU based on writeback-aware miss

(a)

(b)

Fig. 8. Effect of writeback-aware miss curves on partition allocation for quad-
core workloads consisting of four applications. (a) Percentage of writeback
accesses on total SLLC accesses for each application, appi. (b) Comparison
of average partition allocation by UCP and that by RCP+LRU.

curve estimation reduces partition size of applications with
a large percentage of writebacks while it increases partition
size of other applications in comparison to partition allocation
by UCP. Since misses caused by writeback requests from the
upper-level caches do not need to send responses to CPUs,
the latency of the writeback misses on SLLC can be hidden.
Thus, it is unnecessary to allocate capacity for the writeback
misses. As shown in Fig. 8(b), The redundant capacity alloca-
tion can be prevented by writeback-aware miss curves, and the
capacity is allocated to applications which can utilize allocated
capacity more effectively.

E. Total Performance Improvement

Finally, the combinations of RCP and multiple replacement
policies are compared with the existing cache partitioning
methods in terms of system performance. Fig. 9 shows
performance improvement over unpartitioned SLLC managed
by LRU with quad-core workloads. Fig. 9 shows the efficiency
of RCP as a cache partitioning scheme by comparing with the
original UCP incorporated with LRU and CLU incorporated
with both LRU and BIP. RCP+LRU is compared with UCP
which is specialized to LRU and RCP+TA-DIP is also com-
pared with CLU whose target replacement policy is similar
with TA-DIP. In Fig. 9(a), RCP+LRU provides on average
3.71% throughput improvement over UCP while RCP+TA-
DIP provides on average 2.55% throughput improvement over
CLU. With the same (or similar) replacement policy, RCP per-
forms partition allocation more efficiently than UCP and CLU,
and the main source of the improvement is writeback-aware
miss curve estimation. UCP and CLU do not consider the
effect of writeback misses in their miss curve estimation, thus
they allocate unnecessarily large partition to applications with
a large number of writeback accesses. Fig. 9(b) also supports
the trend. In Fig. 9(b), RCP+LRU provides on average 3.84%

LEE et al.: RME FOR EFFICIENT CACHE PARTITIONING 455

(a)

(b)

Fig. 9. Performance improvement versus unpartitioned SLLC managed by LRU with quad-core workloads. (a) Throughput improvement versus unpartitioned
SLLC managed by LRU. (b) Fair speedup improvement versus unpartitioned SLLC managed by LRU.

fair speedup improvement over UCP while RCP+TA-DIP
provides 2.55% fair speedup improvement over CLU.

In addition, Fig. 9 also shows performance gain of RCP
according to a replacement policy. In Fig. 9(a), RCP+DGIPPR
provides up to 6.35% (on average 1.37%) higher through-
put while RCP+LFU provides up to 6.03% (on aver-
age 2.07%) higher throughput, compared with RCP+LRU.
Meanwhile, RCP+TA-DIP provides up to 6.02% (on aver-
age 2.70%) higher throughput while RCP+TA-DRRIP pro-
vides up to 7.03% (on average 3.01%) higher throughput
compared with RCP+LRU. Also, RCP+PDP provides up
to 6.30% (on average 3.55%) higher throughput compared
to RCP+LRU. Since replacement policies, especially PDP,
have the indirect partitioning effect, performance improve-
ments by cache partitioning and replacement policy are
partially overlapped. Nevertheless, cache partitioning with
high-performance replacement policy outperforms cache par-
titioning with LRU. The main reason for the performance
gap comes from efficiency of replacement policies to reduce
intra-application interferences. LRU in SLLC cannot cope with
access patterns with low locality whose reuse distance is larger
than the associativity of the SLLC, while other policies can
handle these so called thrashing access patterns. Finally, the
best combination, RCP+PDP, shows up to 8.23% (on aver-
age 3.40%) throughput improvement compared to the best
technique between UCP and CLU. Fair speedup improvement
is similar to throughput improvement as shown in Fig. 9(b).
RCP+DGIPPR provides up to 6.58% (on average 1.73%)
higher fair speedup, and RCP+LFU provides up to 6.93% (on
average 2.61%) higher fair speedup compared to RCP+LRU.
Also, RCP+TA-DIP provides up to 6.82% (on average 3.01%)

higher fair speedup, and RCP+TA-DRRIP provides up to
8.81% (on average 3.51%) higher fair speedup compared
to RCP+LRU. RCP+PDP provides up to 6.04% (on aver-
age 3.44%) higher fair speedup compared to RCP+LRU.
Thus, the results represent that the fairness among applica-
tions is well maintained while the throughput is improved
by RCP incorporated with high-performance replacement
policies.

Fig. 10 shows performance improvement over unpartitioned
SLLC managed by LRU with 8-core workloads. In Fig. 10(a),
RCP+LRU provides up to 2.51% (on average 1.01%) through-
put improvement over UCP, and RCP+TA-DIP provides
up to 2.39% (on average 1.30%) throughput improvement
over CLU. Similarly, RCP+LRU provides up to 2.73% (on
average 0.97%) fair speedup improvement over UCP, and
RCP+TA-DIP provides up to 2.41% (on average 1.30%)
fair speedup improvement over CLU in Fig. 10(b). Also,
RCP+PDP shows up to 3.14% (on average 1.05%) through-
put improvement over RCP+LRU, showing up to 2.96% (on
average 1.27%) fair speedup improvement over RCP+LRU.
The trend shown in Fig. 9 is still valid in Fig. 10.

Therefore, the combination of RCP and a high-performance
replacement policy outperforms existing cache partitioning
methods which are tailored to conventional replacement poli-
cies by being able to provide the high-performance replace-
ment policy an opportunity to further reduce intra-application
interference.

F. Hardware Overhead of RME

Both hardware-based miss curve estimation and allocation
algorithm for partition allocation require runtime performance

456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 2, FEBRUARY 2018

(a)

(b)

Fig. 10. Performance improvement versus unpartitioned SLLC managed by LRU with 8-core workloads. (a) Throughput improvement versus unpartitioned
SLLC managed by LRU. (b) Fair speedup improvement versus unpartitioned SLLC managed by LRU.

TABLE VI
STORAGE OVERHEAD FOR MISS CURVE

ESTIMATION OF A SINGLE APPLICATION

overheads. As described in [6], however, the overheads have
a marginal impact on the system performance. Operations of
RME and the allocation algorithm are performed in the back-
ground of normal SLLC operations, thus the performance
impact of them can be hidden; ATDs of RME update miss
counters on SLLC access to the sampled set, and this pro-
filing is performed in parallel with normal SLLC operations.
Miss curve estimation with the profiled miss counts and deci-
sion making for partition allocation are performed at the
end of every time interval, and the calculations can be also
performed in the background of normal SLLC operations.
Thus, RCP do not affect the critical paths of normal SLLC
operations.

In contrast to the performance overhead, hardware overhead
is inevitable for miss curve estimation. Especially, storage
overhead of ATDs and counters are dominant [5]. In Table VI,

we compare the overhead of RME and other methods: UCP
based on UMON for LRU, CLU based on UMON and LMON
for BIP, and ECP with ATDs for every available partition
sizes. Since dynamic set sampling [19] is used to reduce ATD
overhead and the number of sampled set is a variable factor,
we compare the number of ATD entries of ATDs per set rather
than the total number of ATD entries in ATDs. The overhead
of ECP increases exponentially with associativity while the
overheads of other methods increase linearly. Compared to
CLU based on UMON and LMON which are lightweight
miss curve estimators, RCP requires about 2/3 the overhead of
CLU. Thus, the overhead of RCP is competitive to state-of-art
low-overhead methods, while providing a better performance.
Note that the overhead shown in Table VI is for a single
application and the total overhead for multiprogrammed
workloads linearly increases with the number of
applications.

Assume that the size of ATD entry is reduced to 10 bits
by using hash function [6] and the number of sampled sets in
each ATD is 64. For 4 MB SLLC with 16-way shared by four
applications, storage overhead of RME for a single application
is about 2 KB (0.05% of SLLC) and the total storage overhead
for four applications is about 9 KB (0.21%) while that of ECP
is 43 KB (0.98%). For 8MB SLLC with 32-way shared by
eight applications, the storage overhead for a single application
is about 4 KB (0.05% of SLLC) and the total overhead is
about 33 KB (0.38%) while that of ECP is 331 KB (3.80%).
Thus, RCP is an efficient cache partitioning method, providing
performance comparable to ECP while requiring much less
storage overhead.

LEE et al.: RME FOR EFFICIENT CACHE PARTITIONING 457

VI. CONCLUSION

While high-performance replacement policies have been
actively proposed, they cannot be incorporated with most
existing cache partitioning methods which are dedicated to a
specific conventional replacement policy. This paper proposes
an RME which enables cache partitioning to be incorpo-
rated with arbitrary replacement policy with low overhead.
Experimental results show that RCP can be effectively config-
ured with high-performance replacement policies effectively,
and RCP with high-performance replacement policy outper-
forms the existing cache partitioning schemes.

REFERENCES

[1] A. Jaleel et al., “Adaptive insertion policies for managing shared caches,”
in Proc. 17th Int. Conf. Parallel Archit. Compilation Tech., 2008,
pp. 208–219.

[2] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer,
“High performance cache replacement using re-reference interval
prediction (RRIP),” ACM SIGARCH Comput. Archit. News, vol. 38,
no. 3, pp. 60–71, 2010.

[3] N. Duong et al., “Improving cache management policies using dynamic
reuse distances,” in Proc. 45th Annu. IEEE/ACM Int. Symp. Microarchit.,
Vancouver, BC, Canada, 2012, pp. 389–400.

[4] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and efficient fine-grain
cache partitioning,” ACM SIGARCH Comput. Archit. News, vol. 39,
no. 3, pp. 57–68, 2011.

[5] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchit., 2006,
pp. 423–432.

[6] D. Zhan, H. Jiang, and S. C. Seth, “Clu: Co-optimizing locality and util-
ity in thread-aware capacity management for shared last level caches,”
IEEE Trans. Comput., vol. 63, no. 7, pp. 1656–1667, Jul. 2014.

[7] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with strict
qos for latency-critical workloads,” ACM SIGPLAN Notices, vol. 49,
no. 4, pp. 729–742, 2014.

[8] Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-partitioning
of multi-core shared caches,” ACM SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 174–183, 2009.

[9] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and
B. Franke, “Cooperative partitioning: Energy-efficient cache partitioning
for high-performance CMPs,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit. (HPCA), New Orleans, LA, USA, 2012, pp. 1–12.

[10] N. Beckmann and D. Sanchez, “Modeling cache performance beyond
LRU,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA),
Barcelona, Spain, 2016, pp. 225–236.

[11] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” ACM SIGARCH
Comput. Archit. News, vol. 35, no. 2, pp. 381–391, 2007.

[12] D. A. Jiménez, “Insertion and promotion for tree-based PseudoLRU last-
level caches,” in Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchit.,
Davis, CA, USA, 2013, pp. 284–296.

[13] G. Bilardi, K. Ekanadham, and P. Pattnaik, “Efficient stack distance
computation for priority replacement policies,” in Proc. 8th ACM Int.
Conf. Comput. Front., 2011, p. 2.

[14] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation tech-
niques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78–117,
1970.

[15] H. Cook et al., “A hardware evaluation of cache partitioning to improve
utilization and energy-efficiency while preserving responsiveness,” ACM
SIGARCH Comput. Archit. News, vol. 41, no. 3, pp. 308–319, 2013.

[16] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A. Jiménez,
“Improving cache performance using read-write partitioning,” in Proc.
IEEE Int. Symp. High Performance Comput. Archit. (HPCA), Orlando,
Florida, USA, 2014, pp. 452–463.

[17] C.-K. Luk et al., “Pin: Building customized program analysis tools
with dynamic instrumentation,” ACM SIGPLAN Notices, vol. 40, no. 6,
pp. 190–200, 2005.

[18] K. Luo, J. Gummaraju, and M. Franklin, “Balancing throughput and
fairness in SMT processors,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw. (ISPASS), 2001, pp. 164–171.

[19] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for
MLP-aware cache replacement,” ACM SIGARCH Comput. Archit. News,
vol. 34, no. 2, pp. 167–178, 2006.

Byunghoon Lee received the B.S. degree in
electrical and electronic engineering from Yonsei
University, Seoul, South Korea, in 2010, where he
is currently pursuing the Ph.D. degree in electrical
and electronic engineering.

His current research interests include system
architecture and low power design.

Kwangsu Kim received the B.S. degree from Yonsei
University, Seoul, South Korea, in 2014, where he is
currently pursuing the master’s degree and the Ph.D.
degree in electrical and electronic engineering.

His current research interests include memory
hierarchy, near-data processing, and ultralow power
computing. He did an internship in Qualcomm
Korea, Seoul, in 2012.

Eui-Young Chung (S’99–M’06) received the B.S.
and M.S. degrees in electronics and computer engi-
neering from Korea University, Seoul, South Korea,
in 1988 and 1990, respectively, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2002.

From 1990 to 2005, he was a Principal Engineer
with SoC Research and Development Center,
Samsung Electronics, Yongin, South Korea. He is
currently a Professor with the School of Electrical
and Electronic Engineering, Yonsei University,

Seoul. His current research interests include system architecture and very
large scale integration design, including all aspects of computer-aided design
with the special emphasis on low-power applications and flash memory
applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

